ГЕОЭКОЛОГИЧЕСКИЕ
ПРОБЛЕМЫ
ТЮМЕНСКОГО
РЕГИОНА
выпуск 3
Геоэкологические проблемы Тюменского региона: Сборник.

Содержание статей сборника посвящено воздействию нефтегазового комплекса на окружающую среду региона, диффузному загрязнению водных объектов, экологическому состоянию растительности, морфометрическим характеристикам рек. В сборник также включены статьи, рассматривающие вопросы формирования золового рельефа, загрязнения снежного покрова, качества атмосферного воздуха, нормативно-правовой базы экологического мониторинга.
Сборник может быть полезен специалистам, работающим в области экологии и природопользования, студентам и всем, кто интересуется охраной окружающей среды.

РЕЦЕНЗЕНТ:
Козин В.В. доктор географических наук, профессор, заслуженный работник высшей школы, заслуженный деятель науки Ханты-Мансийского автономного округа-Югры, академик РАЕН.
O.C. Сизов
ОСОБЕННОСТИ РАЗВИТИЯ ЭОЛОВЫХ ПРОЦЕССОВ
В РЕГИОНАХ НЕФТЕГАЗОДОБЫЧИ НА СЕВЕРЕ ЗАПАДНОЙ
СИБИРИ

Т.А. Барнева
ТЕХНОГЕНЕЗ И ЗАГРЯЗНЕНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ НА
ТЕРРИТОРИИ СРЕДНЕГО ПРИОБЬЯ

О.В. Гертер
АНАЛИЗ ЗАГРЯЗНЕНИЯ СНЕЖНОГО ПОКРОВА ТЕРРИТОРИИ
ПЕСЧАНОГО МЕСТОРОЖДЕНИЯ

А.Ю. Солодовников
НАЧАЛЬНЫЙ ЭТАП СТАНОВЛЕНИЯ НЕФТЕГАЗОДОБЫЧИ В
ТЮМЕНСКОЙ ОБЛАСТИ И ЕЕ ВОЗДЕЙСТВИЕ НА
ОКРУЖАЮЩУЮ СРЕДУ

Т.А. Барнева
НОРМАТИВНО ПРАВОВАЯ БАЗА, ФУНКЦИИ И ОРГАНИЗАЦИЯ
МОНИТОРИНГА В РОССИЙСКОЙ ФЕДЕРАЦИИ

Н.Р. Яхина
ЭКОЛОГО-ГЕОГРАФИЧЕСКАЯ ОЦЕНКА ЕСТЕСТВЕННЫХ
ФИТОЦЕНОЗОВ НИЖНЕВАРТОВСКОГО РАЙОНА НА УРОВНЕ
ЛАНДШАФТНОГО РАЙОНА

О.М. Петрова
МОРФОМЕТРИЧЕСКИЕ И МОРФОЛОГИЧЕСКИЕ ПАРАМЕТРЫ
ИЗЛУЧИН РЕК НИЖНЕГО ПРИИРТЫШЬЯ
из сфагновых мхов, иногда в примеси встречается кукушкин лен. Почвы под кустарничково-сфагновыми лесами торфяно-глеевые. Мощность торфяного горизонта 40-50 см.
Автор выражает благодарность представителям ФГУНПП «Аэрогеология» за предоставленную возможность посетить территорию Берегового ЛУ и ближе познакомиться с неповторимой северной природой.

ЛИТЕРАТУРА

Сизов О. С.
НИИ экологии и рационального использования природных ресурсов ТюмГУ

ОСОБЕННОСТИ РАЗВИТИЯ ЗОЛОВЫХ ПРОЦЕССОВ В РЕГИОНАХ НЕФТЕГАЗОДОБЫЧИ НА СЕВЕРЕ ЗАПАДНОЙ СИБИРИ

На 1 января 2005 года, по данным государственной статистики [5] общая площадь нарушенных земель в Ямало-Ненецком автономном округе составляет 118048 га. При этом наибольшие показатели приходятся на Пуровский, Надымский и Ямальский районы, основные регионы нефтяной газодобычи. Нарушение целостности почвенно-растительного покрова в числе прочих приводит к развитию процессов ветровой эрозии. На сегодняшний день достоверных данных о динамике техногенных песчаных обнажений не существует. В этом отношении получение достоверной информации не возможно без детального анализа разновременных дистанционных данных.
В силу значительной площади рассматриваемой территории, в качестве наиболее репрезентативного был выбран участок междуностного пространства Пякулура и Пурпе.
Выбор участка был обусловлен двумя факторами: наличие всего своеобразия золовых форм рельефа на ограниченной площади и на-
личие нефтегазовых промыслов и признаков антропогенного воздейсвия.

В физико-географическом отношении репрезентативный участок находится в зоне северной тайги, в пределах Южно-Надымско-Пуровской и частично Пуровско-Тазовской провинциях лесной областti Западно-Сибирской страны [2]. Здесь широко распространен золовый рельеф во всем многообразии, отчетливо выделяются типы местоположений и особенности развития. Преимущественно котловины выдувания приурочены к террасовым комплексам и относительно возвышенным водораздельным пространствам.

В административном отношении территория находится в пределах Пуровского района Ямало-Ненецкого автономного округа Тюменской области. Сильное антропогенное воздействие связано с разработкой ряда нефтегазовых месторождений. Покрытие снимков включает Комсомольское, Барсуковское, Ново-Пурпейское, Верхне-Янгтинское, Муравленковское и Вынгялинское месторождения полностью и Губкинское частично. В восточной части, вдоль р. Паякупур проходит коридор коммуникаций, включающий железную дорогу Тюмень-Ямбург, нефте- газопроводы, ЛЭП. В центральной части проходит федеральная автодорога Тюмень-Новый Уренгой.

Зона исследования намеренно исключает населенные пункты Губкинский и Пурпе, поскольку доля открытых песков там снижена в результате постоянно проводимых работ по озеленению. Акцент сделан на территорию месторождений, где рекультивационные работы по закреплению песков практически не проводятся.

В целом на исследуемом участке имеются все природные предпосылки для развития дефляции — наличие песчаных отложений, достаточная сила ветра, маломощный почвенные покровы и разреженная растительность.

Для создания динамического ряда площадей оголенных песков были использованы доступные материалы, включающие:
- данные о раздувах за 1969 год (листы топографической карты масштаба 1:100000 — исходное состояние территории до промышленного освоения);
- данные о раздувах за 1987-1988 гг — дистанционные данные со спутника Landsat-5 с пространственным разрешением 28,5 м;
- данные о раздувах за 2001 год — дистанционные данные со спутника Landsat-7 с пространственным разрешением для многоканальных каналов 28,5м, для панхроматического — 14,5 м;
- данные о раздувах за 2006 год — дистанционные данные со спутников SPOT-2/4 с пространственным разрешением 10 м для панхроматического канала.

Дополнительно использовались архивные данные — границы месторождений и современная техногенная нагрузка.

Космические снимки со спутников SPOT-2/4 (4 сцены) были предоставлены ИТЦ «СканЭкс», снимки со спутников Landsat-5 (2 сцены) и Landsat-7 (2 сцены) были использованы из архива НИИ экологии и рационального использования природных ресурсов (ТюмГУ).

Методическая работа заключалась в сопоставлении разновременных данных: топографических карт, ДДЗ по состоянию местности до начала освоения и в настоящее время. Декодирование проводилось с использованием метода контролируемой классификации по эталонам с выделением класса оголенных (непокрытых растительностью) песков. Дальнейшая статистика была получена в среде ГИС на основе сформированного проекта.

Расчет производился по семи месторождениям углеводородов: Комсомольскому, Барсуковскому, Ново-Пурпейскому, Верхне-Янгтинскому, Муравленковскому, Вынгаяхинскому и Губкинскому для 1988, 2001 и 2006 гг. На основе топографической карты были выделены естественные зольные формы рельефа, в дальнейшем на основе районов их распространения выделялся исходный естественный рельеф, который анализировался отдельно от антропогенного.

В разделении антропогенного и зольного рельефа заключается определенная методическая сложность в том случае, когда существующая котловина подвергается воздействию — через нее прокладываются дороги, в ней ведутся разработки песка и т.д. Антропогенный рельеф, разделенный на три класса (площадной, карьерный и линейный), хорошо дифференцируется по снимкам. Учитывается вся площадь отвода с зоной разработки, как потенциальный источник переноса песчаного материала и показатель антропогенной нарушенности территории.

По результатам работ были получены данные, представленные в таблицах 1 и 2.

Анализ полученных данных показывает, что разнонаправленная динамика естественного рельефа во многом обусловлена сложностью его отделения от антропогенного. Там, где природные котловины выдуваются попадают в зону воздействия, рост может превышать сотни процентов. Для Муравленковского месторождения это связано с активным расширением промысла, а для Барсуковского и Вынгаяхин-
ского воздействие происходит на территории, максимально подверженной ветровой эрозии и максимально дефляционно уязвимой. Рост естественных котловин выдувания обусловлен в первую очередь их вовлечением в хозяйственную деятельность. Нарушается целостность окаймляющих валов, образуются аэродинамические коридоры по которым происходит вынос песчаного материала.

Таблица 1
Динамика песчаных обнажений по месторождениям (естественный золовой рельеф)

<table>
<thead>
<tr>
<th>Месторождение</th>
<th>S за 1988 год, га</th>
<th>S за 2001 год, га</th>
<th>Прирост по отношению к предыдущей дате, %</th>
<th>S за 2006 год, га</th>
<th>Прирост по отношению к предыдущей дате, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Барсуковское</td>
<td>123</td>
<td>119,6</td>
<td>-2,8*</td>
<td>131,2</td>
<td>9,8</td>
</tr>
<tr>
<td>Вынгаяхинское</td>
<td>248</td>
<td>411</td>
<td>65,7</td>
<td>1164,2</td>
<td>183,3</td>
</tr>
<tr>
<td>Губкинское</td>
<td>182,7</td>
<td>139,4</td>
<td>-23,7</td>
<td>176</td>
<td>26,2</td>
</tr>
<tr>
<td>Муравленковское</td>
<td>8,2</td>
<td>56,6</td>
<td>588,8</td>
<td>39,7</td>
<td>-29,8</td>
</tr>
</tbody>
</table>

* - отрицательная динамика отмечена курсивом

Отрицательные значения динамики характеры в целом для ненарушенных естественных котловин. Это подтверждается более ранними исследованиями песков в среднем течении р.Надым, где фиксируется сокращение котловин в среднем на 11,2%. Кроме того отрицательные значения согласуются с результатами исследований, проведенных в Припеченской тундре [1] и бассейне р.Вилюй [4], также показавших естественное зарастание оголенных песков.

В отношении антропогенного рельефа практически во всех примерах (за исключением Ново-Пурпейского месторождения за 2001 год) наблюдается устойчивый рост нарушенных территорий. С 1988 по 2001 годы этот рост наиболее значителен, в дальнейшем дефляция замедляется. Основными факторами развития дефляции является повышенная степень дренажа участков и степень нарушенности как в результате природных (гари), так и антропогенных (строительство и нефтегазопромышленные работы) причин. Тенденция к увеличению площади оголенных песков под влиянием антропогенного воз-
действия подтверждается аэрокосмическим мониторингом природной среды п-ова Ямал [3], где для ряда участков аналогично выявлено значительное увеличение песчаных образований, вызванное разработкой газовых месторождений.

Таблица 2

<table>
<thead>
<tr>
<th>Месторождение</th>
<th>Площадь, га</th>
<th>Прирост по отношению к предыдущей дате, %</th>
<th>Площадь, га, 2006</th>
<th>Прирост по отношению к предыдущей дате, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Барсуковское</td>
<td>536,5</td>
<td>1442,8</td>
<td>168,9</td>
<td>1689,8</td>
</tr>
<tr>
<td>Вынгаяхинское</td>
<td>173,1</td>
<td>1060</td>
<td>512,5</td>
<td>1155,9</td>
</tr>
<tr>
<td>Губкинское</td>
<td>420,2</td>
<td>1001,3</td>
<td>138,3</td>
<td>1939,5</td>
</tr>
<tr>
<td>Комсомольское</td>
<td>435,8</td>
<td>926,4</td>
<td>112,6</td>
<td>998,8</td>
</tr>
<tr>
<td>Муравленковское</td>
<td>1021,7</td>
<td>1652,8</td>
<td>61,8</td>
<td>2214,4</td>
</tr>
<tr>
<td>Ново-Пурпейское</td>
<td>634,2</td>
<td>527,7</td>
<td>-16,8</td>
<td>881,3</td>
</tr>
<tr>
<td>Верхнее-Янгтинское</td>
<td>1,5</td>
<td>61,8</td>
<td>3960,2</td>
<td>137,8</td>
</tr>
</tbody>
</table>

* - отрицательная динамика отмечена курсивом

Максимальные показатели характерны для Верхне-Янгтинского (рис. 1), Вынгаяхинского и Барсуковского месторождений, особенно в период с 1988 по 2001. Для Верхне-Янгтинского месторождения до начала освоения не характерно наличие оголенных песков, а в 2006 году площадь песков уже превышает 130 га.

Можно сказать, что максимальные значения динамики оголенных песков характерны для периода максимального воздействия при строительстве и обустройстве. Таким образом, Губкинское и Верхне-Янгтинское месторождения в настоящее время испытывают максимальное воздействие. В дальнейшем рост площадей оголенных песков замедляется.
Рис. 1. Динамика оголенных песков Верхне-Янгтинского месторождения (1 — 1988 год, снимок Landsat-5, архив НИИ экологии, 2 — 2001 год, снимок Landsat-7, архив НИИ экологии, 3 — 2006 год, снимок SPOT-4, предоставлен ИТЦ «СканЭкс»)
Генетически новые формы антропогенного рельефа широко подтверждены процессам дефляции, трансформируясь с течением времени в аккумулятивные или денудационные золовые.

Даже при снижении темпов строительства возобновления растительности в целом не происходит. Это связано, прежде всего, с продолжающимся механическим воздействием (неконтролируемый проезд автотранспорта, техногенные вырубки и пожары и др.). Полевые наблюдения показали, что даже при проведении рекультивационных работ (на песчаных карьерах) возобновление растительности либо не происходит, либо отмечается очень слабо и только при наличии близко залегающих грунтовых вод.

Частичное сокращение песков, отмеченное для дренированных водоразделов и производных экосистем Комсомольского месторождения связано во-первых, с естественным возобновлением растительности, а во-вторых, с уменьшением воздействия при переходе от стадии строительства и обустройства к стадии добычи и эксплуатации месторождения. Подобная тенденция, предположительно, будет в дальнейшем характерна для остальных месторождений.

Таким образом, образованные при антропогенном нарушении почвенно-растительного покрова песчаные обнажения в условиях севера Западной Сибири находятся в состоянии устойчивого равновесия. Даже с прекращением активной хозяйственной деятельности наблюдается рост площадей песков в результате нерегламентируемого воздействия и отсутствия рекультивационных работ. Во втором случае возникающие нарушения являются ядром развития дефляции.

В этом отношении основной рекомендацией согласно представленным выводам является жесткое регламентирование любых видов воздействий (особенно проезда автотранспорта) в пределах дефляционно уязвимых участков. Без проведения активных действий по сохранении можно прогнозировать сокращение темпов прироста площадей оголенных песков. В дальнейшем, с отработкой месторождений и прекращением активных воздействий при условии незначительных климатических изменений динамика примет слабые отрицательные значения и вновь образованные золовые формы рельефа как и природные будут находиться в динамически устойчивом состоянии.
ЛИТЕРАТУРА

2. Лукин В.В., Толстыхин О.Н. Тюнгские тукуланы в бассейне реки Вилюй // Наука и техника в Якутии. Якутск: Изд-во Института мерзлотоведения СО РАН, 2005. № 1(8), С. 23-29.

5. Экологическое состояние, использование природных ресурсов, охрана окружающей среды Тюменской области/ Департамент по охране окружающей среды Тюменской области. Тюмень, 2005. 196 с.